Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 996
1.
PLoS One ; 19(5): e0301254, 2024.
Article En | MEDLINE | ID: mdl-38713689

Oil seed crops are the second most important field crops after cereals in the agricultural economy globally. The use and demand for oilseed crops such as groundnut, soybean and sunflower have grown significantly, but climate change is expected to alter the agroecological conditions required for oilseed crop production. This study aims to present an approach that utilizes decision-making tools to assess the potential climate change impacts on groundnut, soybean and sunflower yields and the greenhouse gas emissions from the management of the crops. The Decision Support Tool for Agrotechnology Transfer (DSSAT v4.7), a dynamic crop model and the Cool Farm Tool, a GHG calculator, was used to simulate yields and estimate GHG emissions from these crops, respectively. Four representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5), three nitrogen (0, 75, and 150 kg/ha) and phosphorous (0, 30 and 60 P kg/ha) fertilizer rates at three sites in Limpopo, South Africa (Ofcolaco, Syferkuil and Punda Maria) were used in field trials for calibrating the models. The highest yield was achieved by sunflower across all crops, years and sites. Soybean yield is projected to decrease across all sites and scenarios by 2030 and 2050, except at Ofcolaco, where yield increases of at least 15.6% is projected under the RCP 4.5 scenario. Positive climate change impacts are predicted for groundnut at Ofcolaco and Syferkuil by 2030 and 2050, while negative impacts with losses of up to 50% are projected under RCP8.5 by 2050 at Punda Maria. Sunflower yield is projected to decrease across all sites and scenarios by 2030 and 2050. A comparison of the climate change impacts across sites shows that groundnut yield is projected to increase under climate change while notable yield losses are projected for sunflower and soybean. GHG emissions from the management of each crop showed that sunflower and groundnut production had the highest and lowest emissions across all sites respectively. With positive climate change impacts, a reduction of GHG emissions per ton per hectare was projected for groundnuts at Ofcolaco and Syferkuil and for sunflower in Ofcolaco in the future. However, the carbon footprint from groundnut is expected to increase by 40 to 107% in Punda Maria for the period up to 2030 and between 70-250% for 2050, with sunflower following a similar trend. We conclude that climate change will potentially reduce yield for oilseed crops while management will increase emissions. Therefore, in designing adaptation measures, there is a need to consider emission effects to gain a holistic understanding of how both climate change impacts on crops and mitigation efforts could be targeted.


Climate Change , Crops, Agricultural , Crops, Agricultural/growth & development , South Africa , Seeds/growth & development , Glycine max/growth & development , Helianthus/growth & development , Models, Theoretical , Fertilizers/analysis , Greenhouse Gases/analysis , Plant Oils , Agriculture/methods
2.
Science ; 384(6696): 697-703, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723080

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Anopheles , Hydrology , Malaria , Mosquito Vectors , Animals , Malaria/transmission , Africa , Anopheles/parasitology , Mosquito Vectors/parasitology , Climate Change , Humans , Seasons , Rain , Models, Theoretical , Water , Greenhouse Gases/analysis
3.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696360

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Agriculture , Greenhouse Gases , Methane , Ponds , Methane/analysis , Greenhouse Gases/analysis , Australia , Environmental Monitoring , Climate Change
4.
Lancet Planet Health ; 8(5): e327-e333, 2024 May.
Article En | MEDLINE | ID: mdl-38729672

Health care contributes 4·4% of global net carbon emissions. Hospitals are resource-intensive settings, using a large amount of supplies in patient care and have high energy, ventilation, and heating needs. This Viewpoint investigates emissions related to health care in a patient's last year of life. End of life (EOL) is a period when health-care use and associated emissions production increases exponentially due primarily to hospital admissions, which are often at odds with patients' values and preferences. Potential solutions detailed within this Viewpoint are facilitating advanced care plans with patients to ensure their EOL wishes are clear, beginning palliative care interventions earlier when treating a life-limiting illness, deprescribing unnecessary medications because medications and their supply chains make up a significant portion of health-care emissions, and, enhancing access to low-intensity community care settings (eg, hospices) within the last year of life if home care is not available. Our analysis was done using Canadian data, but the findings can be applied to other high-income countries.


Greenhouse Gases , Terminal Care , Humans , Canada , Greenhouse Gases/analysis
5.
J Hazard Mater ; 471: 134294, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38669928

Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.


Carbon Dioxide , Methane , Microplastics , Volatile Organic Compounds , Carbon Dioxide/analysis , Volatile Organic Compounds/analysis , Methane/analysis , Microplastics/analysis , Soil/chemistry , Ecosystem , Soil Pollutants/analysis , Greenhouse Gases/analysis , Environmental Monitoring , Biodegradation, Environmental , Air Pollutants/analysis
6.
Curr Environ Health Rep ; 11(2): 225-237, 2024 Jun.
Article En | MEDLINE | ID: mdl-38600409

PURPOSE OF REVIEW: To describe the role of health equity in the context of carbon capture, utilization, and sequestration (CCUS) technologies. RECENT FINDINGS: CCUS technologies have the potential to both improve and worsen health equity. They could help reduce greenhouse gas emissions, a major contributor to climate change, but they could also have negative health impacts like air and noise pollution. More research is needed to fully understand the health equity implications of CCUS technologies. CCUS technologies have both health equity risks and benefits. Implementing misguided CCUS projects in vulnerable communities could exacerbate environmental injustice and health disparities and have the potential to increase carbon emissions. However, well-conceived projects could benefit communities through economic development. Governments, industry, and society should prioritize and expedite the reduction of CO2 emissions before considering carbon reductions via CCUS. Furthermore, CCUS projects must be thoroughly evaluated and should only proceed if they have demonstrated a net reduction in CO2 emissions and provide more benefits than risks to local communities. This underscores the importance of prioritizing health equity in the planning of CCUS projects.


Carbon Sequestration , Health Equity , Humans , Climate Change , Air Pollution/prevention & control , Carbon Dioxide/analysis , Greenhouse Gases/analysis
7.
Sci Total Environ ; 929: 172439, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38621540

Biochar and soil carbon sequestration hold promise in mitigating global warming by storing carbon in the soil. However, the interaction between biochar properties, soil carbon-nitrogen cycling, and nitrogen fertilizer application's impact on soil carbon-nitrogen balance remained unclear. Herein, we conducted batch experiments to study the effects and mechanisms of rice straw biochar application (produced at 300, 500, and 700 °C) on net greenhouse gas emissions (CO2, N2O, CH4) in upland soils under different forms of nitrogen fertilizers. The findings revealed that (NH4)2SO4 and urea significantly elevated soil carbon dioxide equivalent emissions, ranging from 28 to 61.7 kg CO2e/ha and 8.2 to 37.7 kg CO2e/ha, respectively. Conversely, KNO3 reduced soil CO2e emissions, ranging from 2.2 to 13.6 kg CO2e/ha. However, none of these three nitrogen forms exhibited a significant effect on CH4 emissions. The pyrolysis temperature of biochar was found negatively correlated with soil CO2 and N2O emissions. The alkaline substances presented in biochar pyrolyzed at 500-700 °C raised soil pH, increased the ratio of Gram-negative to Gram-positive bacteria, and enhanced the relative abundance of Sphingomonadaceae. Moreover, the co-application of KNO3 based nitrogen fertilizer and biochar increased the total carbon/inorganic nitrogen ratio and reduces the relative abundance of Nitrospirae. This series of reactions led to a significant increase in soil DOC content, meanwhile reduced soil CO2 emissions, and inhibited the nitrification process and decreased the emission of soil N2O. This study provided a scientific basis for the rational application of biochar in soil.


Carbon Dioxide , Charcoal , Fertilizers , Nitrogen , Nitrous Oxide , Soil , Charcoal/chemistry , Fertilizers/analysis , Soil/chemistry , Nitrous Oxide/analysis , Nitrogen/analysis , Carbon Dioxide/analysis , Air Pollutants/analysis , Greenhouse Gases/analysis , Agriculture/methods
8.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583627

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Methane , Nitrous Oxide , Peroxides , Water Quality , Methane/analysis , Nitrous Oxide/analysis , Peroxides/analysis , Water Pollutants, Chemical/analysis , Greenhouse Gases/analysis
9.
Mar Pollut Bull ; 202: 116303, 2024 May.
Article En | MEDLINE | ID: mdl-38569305

Sargassum spp. strandings in the tropical Atlantic harm local ecosystems due to toxic sulfide levels. We conducted a mesocosm experiment to test the efficacy of iron(III) (hydr)oxides in (a) mitigating sulfide toxicity in mangroves resulting from Sargassum and (b) reducing potentially enhanced greenhouse gas emissions. Our results show that iron addition failed to prevent mangrove mortality caused by highly toxic sulfide concentrations, which reached up to 15,000 µmol l-1 in 14 days; timely removal may potentially prevent mangrove death. Sargassum-impacted mesocosms significantly increased methane, nitrous oxide, and carbon dioxide emissions, producing approximately 1 g CO2-equivalents m-2 h-1 during daylight hours, thereby shifting mangroves from sinks to sources of greenhouse gasses. However, iron addition decreased methane emissions by 62 % and nitrous oxide emissions by 57 %. This research reveals that Sargassum strandings have multiple adverse effects related to chemical and ecological dynamics in mangrove ecosystems, including greenhouse gas emissions.


Methane , Nitrous Oxide , Sargassum , Sulfides , Wetlands , Iron , Water Pollutants, Chemical/toxicity , Greenhouse Gases/analysis
10.
Sci Total Environ ; 928: 172452, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38615757

Greenhouse gas (GHG) fluxes from peatland soils are relatively well studied, whereas tree stem fluxes have received far less attention. Simultaneous year-long measurements of soil and tree stem GHG fluxes in northern peatland forests are scarce, as previous studies have primarily focused on the growing season. We determined the seasonal dynamics of tree stem and soil CH4, N2O and CO2 fluxes in a hemiboreal drained peatland forest. Gas samples for flux calculations were manually collected from chambers at different heights on Downy Birch (Betula pubescens) and Norway Spruce (Picea abies) trees (November 2020-December 2021) and analysed using gas chromatography. Environmental parameters were measured simultaneously with fluxes and xylem sap flow was recorded during the growing season. Birch stems played a greater role in the annual GHG dynamics than spruce stems. Birch stems were net annual CH4, N2O and CO2 sources, while spruce stems constituted a CH4 and CO2 source but a N2O sink. Soil was a net CO2 and N2O source, but a sink of CH4. Temporal dynamics of stem CH4 and N2O fluxes were driven by isolated emissions' peaks that contributed significantly to net annual fluxes. Stem CO2 efflux followed a seasonal trend coinciding with tree growth phenology. Stem CH4 dynamics were significantly affected by the changes between wetter and drier periods, while N2O was more influenced by short-term changes in soil hydrologic conditions. We showed that CH4 emitted from tree stems during the wetter period can offset nearly half of the soil sink capacity. We presented for the first time the relationship between tree stem GHG fluxes and sap flow in a peatland forest. The net CH4 flux was likely an aggregate of soil-derived and stem-produced CH4. A dominating soil source was more evident for stem N2O fluxes.


Betula , Environmental Monitoring , Forests , Greenhouse Gases , Methane , Soil , Greenhouse Gases/analysis , Soil/chemistry , Methane/analysis , Seasons , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Picea , Plant Stems , Air Pollutants/analysis
11.
Environ Sci Pollut Res Int ; 31(19): 27531-27553, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573581

The total amount of global municipal solid waste (MSW) will reach 3.5 billion tons by 2050, thereby bringing tremendous environmental pressure, especially global warming. Large amounts of greenhouse gases (GHGs) have been released during MSW management (MSWM). Accounting for GHG emissions is a prerequisite for providing recommendations on appropriate treatment options to mitigate emissions from MSWM systems. There are many methods involved in estimating emissions. This paper summarizes the computing models commonly used in each process of the integrated MSWM system and emphasizes the influence of parameters and other factors. Compared with other disposal methods, landfilling has the highest emissions, commonly estimated using first-order decay (FOD) methods. Emission reduction can be realized through waste to energy (WtE) and resource recovery measures. IPCC is commonly used for calculating direct emissions, while LCA-based models can calculate emissions including upstream and downstream processes, whose results depend on assumptions and system boundaries. The estimation results of models vary greatly and are difficult to compare with each other. Besides, large gaps exist between the default emission factors (EFs) provided by models and those F measured in specific facilities. These findings provide a systematic view for a bettering understanding of MSW emissions as well as the estimating methods and also reveal the key points that need be developed in the future.


Greenhouse Gases , Refuse Disposal , Solid Waste , Greenhouse Gases/analysis , Refuse Disposal/methods , Waste Management/methods , Models, Theoretical , Air Pollutants/analysis , Environmental Monitoring/methods
12.
Sci Total Environ ; 930: 172851, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38685430

N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.


Nitrogen , Nitrous Oxide , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Nitrous Oxide/analysis , Nitrogen/analysis , Air Pollutants/analysis , Water Pollutants, Chemical/analysis , Greenhouse Gases/analysis
13.
Environ Monit Assess ; 196(5): 474, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38662125

Reducing emissions from deforestation and forest degradation (REDD) is a specific strategy for combating deforestation and forest degradation to alleviate the effects of climate change. In this study, the potential greenhouse gas (GHG) emission reduction resulting from the implementation of a REDD project is estimated. Changes in forest cover throughout the years 1985, 1990, 1995, 2000, 2010, 2015, and 2020 were analyzed using time-series Landsat imagery (TM, ETM + , and OLI) and a random forest algorithm. Multilayer perceptron neural networks were used to model the transition potential of the forest cover, which were then predicted via Markov chain analysis. The change detection analysis revealed two discernible patterns in forest cover dynamics. Between 1985 and 2000, a notable decrease in forest cover was seen, whereas from 2000 to 2020, it significantly increased. The results suggested that the absence of REDD implementation would result in the deforestation of approximately 199,569 hectares of forest cover between 2020 and 2050, leading to the release of 1,995,695 tCO2e of emissions into the atmosphere. However, with the implementation of REDD, these emissions would be reduced to 405,512 tCO2e, effectively preventing the release of 1,590,183 tCO2e of emissions into the upper atmosphere. This study demonstrates that the implementation of REDD projects can be an effective strategy for reducing GHG emissions and mitigating climate change in the Hyrcanian forests.


Climate Change , Conservation of Natural Resources , Environmental Monitoring , Forests , Greenhouse Gases , Greenhouse Gases/analysis , Iran , Conservation of Natural Resources/methods , Environmental Monitoring/methods
14.
Sci Rep ; 14(1): 8706, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622195

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Charcoal , Greenhouse Gases , Oryza , Soil/chemistry , Global Warming , Agriculture/methods , Greenhouse Gases/analysis , Oryza/chemistry , Methane/analysis , Carbon , Nitrous Oxide/analysis
15.
Lancet Planet Health ; 8 Suppl 1: S16, 2024 04.
Article En | MEDLINE | ID: mdl-38632911

BACKGROUND: There have been many modelled studies of potential health co-benefits from actions to reduce greenhouse gas emissions, but so far there have been no large-scale attempts to compare the magnitude of health and climate effects across sectors, countries, and study designs. METHODS: As part of the Pathfinder Initiative project an umbrella review of studies was done, and 26 previous reviews were identified with 57 primary studies included. Studies included in the review were required to have quantified changes in greenhouse gas emissions and health effects (or risk factors) from defined actions to reduce climate effects. Study data were extracted and harmonised by standardising impact measures per 100 000 of the national population (or urban population for city-level actions), averaging effects over a 1-year period and aggregating actions into their respective sectors by use of a predefined framework. FINDINGS: From 200 mitigation actions, the majority were in the agriculture, forestry, and land use sector (103 actions [52%]), followed by the transport sector (43 actions [22%]). The largest effects on greenhouse gas emissions were seen from actions in the energy sector, and these actions also had substantial health co-benefits in lower middle-income countries, although benefits were smaller in high-income settings. The greatest health benefits were seen from actions to change diets and introduce clean cookstoves. The major pathways to health were through reduced air pollution, healthier diets, and increased physical activity from switching to active travel modes. Effect sizes tended to be larger from national modelling studies and smaller from localised or implemented actions. INTERPRETATION: The potential co-benefits to health from actions to reduce climate change are large, but most evidence still comes from modelling studies and from high-income and middle-income countries. There are also major context-dependent differences in the magnitude of effects found, so actions need to be tailored to the local context and careful attention needs to be paid to potential trade-offs and spillover effects. FUNDING: The Wellcome Trust and the Oak Foundation.


Air Pollution , Greenhouse Gases , Greenhouse Gases/analysis , Greenhouse Effect , Air Pollution/analysis , Agriculture
16.
Sci Total Environ ; 927: 172296, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38588732

Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.


Greenhouse Gases , Waste Disposal, Fluid , Wetlands , Greenhouse Gases/analysis , Waste Disposal, Fluid/methods , Cyperus/metabolism , Carbon/metabolism , Wastewater , Typhaceae/metabolism , Acorus/metabolism
17.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600111

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Oxidation-Reduction , Iron , Methane/metabolism , Minerals
18.
J Environ Manage ; 357: 120736, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574706

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Greenhouse Gases , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Biofuels/analysis , Sanitation , Soil/chemistry , Methane/analysis , Nitrous Oxide/metabolism , Greenhouse Effect
19.
Sci Total Environ ; 926: 172133, 2024 May 20.
Article En | MEDLINE | ID: mdl-38569960

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Greenhouse Gases , Oryza , Greenhouse Gases/analysis , Oryza/metabolism , Agriculture/methods , Global Warming , Crop Production , Nitrous Oxide/analysis , Methane/analysis , Soil , China
20.
Int J Behav Nutr Phys Act ; 21(1): 36, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566176

BACKGROUND: The Planetary Health Diet Index (PHDI) measures adherence to the dietary pattern presented by the EAT-Lancet Commission, which aligns health and sustainability targets. There is a need to understand how PHDI scores correlate with dietary greenhouse gas emissions (GHGE) and how this differs from the carbon footprints of scores on established dietary recommendations. The objectives of this study were to compare how the PHDI, Healthy Eating Index-2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to (a) dietary GHGE and (b) to examine the influence of PHDI food components on dietary GHGE. METHODS: We used life cycle assessment data from the Database of Food Recall Impacts on the Environment for Nutrition and Dietary Studies to calculate the mean dietary GHGE of 8,128 adult participants in the 2015-2016 and 2017-2018 cycles of the National Health and Nutrition Examination Survey (NHANES). Poisson regression was used to estimate the association of (a) quintiles of diet score and (b) standardized dietary index Z-scores with dietary GHGE for PHDI, HEI-2015, and DASH scores. In secondary analyses, we used Poisson regression to assess the influence of individual PHDI component scores on dietary GHGE. RESULTS: We found that higher dietary quality on all three indices was correlated with lower dietary GHGE. The magnitude of the dietary quality-dietary GHGE relationship was larger for PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO2 equivalents per one standard deviation change] and for DASH [-0.5, (-0.4, -0.6) kg CO2-equivalents] than for HEI-2015 [-0.2, (-0.2, -0.3) kg CO2-equivalents]. When examining PHDI component scores, we found that diet-related GHGE were driven largely by red and processed meat intake. CONCLUSIONS: Improved dietary quality has the potential to lower the emissions impacts of US diets. Future efforts to promote healthy, sustainable diets could apply the recommendations of the established DASH guidelines as well as the new guidance provided by the PHDI to increase their environmental benefits.


Dietary Approaches To Stop Hypertension , Greenhouse Gases , Adult , Humans , Diet, Healthy , Greenhouse Gases/analysis , Nutrition Surveys , Carbon Dioxide/analysis , Diet
...